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1 A Weil-gue recollection

Recall (from way back in lecture 15) the Weil Conjectures, a series of now-proved
theorems about the zeta function of a variety over a finite field.

Let X be a nonsingular, d-dimensional projective variety over the finite field
Fq of q elements. Let Nk be the number of points on X over the field of qk

elements. The zeta function of X is defined as

ζ(X, s) = exp
( ∞∑
k=1

Nk
k

(q−s)k
)
.

Often we will want to make the substitution t = q−s. When we wish to
consider the zeta function of X as a function of t, the definition becomes

Z(X, t) = exp
( ∞∑
k=1

Nk
k
tk
)
.

With this set-up, we can now state two of the Weil Conjectures:

• Rationality : Z(X, t) is a rational function of t.

More specifically, Z(X, t) has the following form:

Z(X, t) =
P1(t)P3(t) . . . P2d−1(t)
P0(t)P2(t) . . . P2d(t)

,

where each Pi is a polynomial with integer coefficients, P0(t) = 1 − t,
P2d(t) = 1− qdt, and for 1 ≤ i ≤ 2d− 1,

Pi(t) =
βi∏
j=1

(1− αi,jt),

where the αi,j are algebraic integers, and βi ∈ N for all i and j.

• Riemann Hypothesis: |αi,j | = qi/2 for all i and j.

The other two assertions say that the zeta function satisfies a functional
equation, just like all good zeta functions should, and that the βi are the topo-
logical Betti numbers.
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What is so astounding about the Weil Conjectures is that they provide a
link between the discrete (the number of points on a variety over a finite field)
and the continuous (topological notions such as Betti numbers).

One of the great triumphs of algebraic geometry (or at least for those with an
arithmetic bent) of the 20th century was proving these conjectures. In the rest
of this talk, I hope to illustrate how they were proved by way of constructing a
suitable cohomology theory. Since “cohomology” is one of those irritating words
in maths which is casually slipped into conversation without ever explaining
what it means, I’ll also attempt to give a crash course in (co)homology.

2 Rationality via Lefschetz

Although rationality was proved first using p-adic methods by Dwork in 1959, it
was Grothendieck in 1964 who discovered the correct cohomology theory which
proved everything except the Riemann hypothesis (which was proved by Deligne
in 1973). This section will attempt to give an idea of why such a cohomology
theory leads to rationality as an immediate corollary.

To start with, we state an elemental result whose proof can be found in, for
example, Ireland & Rosen’s A Classical Introduction to Modern Number Theory,
page 155, Proposition 11.1.1.

Lemma. The zeta function is rational if and only if there exist complex numbers
αi and βj such that

Nk =
∑
j

βkj −
∑
i

αki .

So it remains to find such αi and βj .
What Weil himself noticed was that it was conceivable that such an expres-

sion might be obtained from a formula from topology attributed to Lefschetz,
called the Lefschetz Fixed-Point Formula.

Theorem. Lefschetz Fixed-Point Formula
Let Y be a topological space and f : Y −→ Y a continuous mapping from

Y to itself. Let Λf denote the number of fixed points of f , i.e. points y ∈ Y
such that f(y) = y, counted with appropriate multiplicities. Then

Λf =
∑
i

(−1)i Tr(f |Hi(Y,Q)).

What this theorem says is that the fixed points can be obtained from the
trace of the induced linear map f |Hi(Y,Q) acting on the cohomology Q-vector
spaces Hi(Y,Q) for each i.

Now Weil’s insight was to realise that the points X(Fqk) on a variety X over
Fqk are precisely the fixed points of the qk-th power Frobenius map. That is, let
X̄ denote X considered over an algebraic closure of Fqk , and let φqk : X̄ −→ X̄
be the Frobenius map which takes each coordinate of X̄ to its qk-th power.
Then the fixed points of φqk are precisely the points of X(Fqk).

So, suppose that X had some sort of “nice” topology on it, or some suitably
complicated mathematical structure comparable to topology, and that we could

2



define some sort of cohomology theory on X.1 Then, hopefully, we could use
the Lefschetz fixed point theorem to show that

Nk = #X(Fqk) =
∑
i

(−1)iTr(φqk |Hi(X,Q`)).

Now if you’re willing to believe (as I am) that each Tr(φqk |Hi(X,Q`)) is
expressible as the k-th power of a complex number, then we are in the situation
of the lemma, and thus the zeta function is rational.

So all that remains(!) is to discover the correct cohomology theory, called
a Weil cohomology theory. It is no surprise, of course, that such a cohomology
theory comes from étale cohomology.

3 But what is cohomology?

This section will attempt to give the briefest of introductions to what is meant
by (co)homology.

In a nutshell, a (co)homology theory is a way of assigning a sequence of
modules to a given mathematical structure X in order to encode information
about X. The archetypal example comes from algebraic topology: the case
when X is a topological space, and the assigned sequence of modules are all
Z-modules, i.e. abelian groups. This is the so-called singular homology.

Homology. For any homology theory, the sequence of modules
C0, C1, C2, . . . associated to X is called a chain complex, denoted C•(X). In
order for C•(X) to be a chain complex, we must also have maps ∂n : Cn −→
Cn−1 satisfying ∂n∂n+1 = 0 for all n. A chain complex is often written as a
diagram

. . .
∂n+1−→ Cn

∂n−→ Cn−1
∂n−1−→ . . .

∂1−→ C1
∂0−→ C0 = 0.

The homology groups Hn(X) are defined to be the quotient modules

Hn(X) = ker ∂n / im ∂n+1.

Often the modules C0, C1, C2, . . . are free modules over some ring, generated
by some elements, and so we could construct them as free modules over any
ring R. The ring R is often called the coefficient ring. To distinguish between
homology groups with different coefficient rings, we write them as Hi(X,R).

Cohomology. For a cohomology theory, the sequence of modules C0, C1, . . .
associated to X is called a cochain complex, denoted C•(X). In order for C•(X)
to be a cochain complex, we must also have maps dn : Cn −→ Cn+1 satisfying
dn+1dn = 0 for all n. A cochain complex is often written as a diagram

. . .
dn+1

←− Cn
dn

←− Cn−1 d
n−1

←− . . .
d1←− C1 d0←− C0 = 0.

The cohomology groups Hn(X) are defined to be the quotient modules

Hn(X) = ker dn+1 / im dn.

1It turns out that the “correct” cohomology groups are vector spaces over the `-adic num-
bers, Q`, rather than over Q. Don’t ask me why.
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Often the modules C0, C1, C2, . . . are free modules over some ring, generated
by some elements, and so we could construct them as free modules over any
ring R. The ring R is often called the coefficient ring. To distinguish between
cohomology groups with different coefficient rings, we write them as Hi(X,R).

Functoriality. The operators Hn(∗) and Hn(∗) turn out to be functors
(covariant and contravariant respectively), so that a morphism X −→ Y induces
a morphism on the homology groups Hn(X) −→ Hn(Y ) or on the cohomology
groups Hn(Y ) −→ Hn(X).

Now if we look back at the Lefschetz fixed-point formula, the terms involved
are far less mysterious. The function f : X −→ X is a continuous map, so for
each i, f induces a Q-linear map f |Hi(X,Q) between the vector space Hi(X,Q)
and itself, thus it has a trace.

4 Étale Cohomology and `-adic Cohomology

Now that we know what we are looking for, here is a summary of the key
points in the search for the “correct” cohomology theory which proves the Weil
conjectures.

No Nice Topology! The main problem was that for X a variety over a
finite field, no one could come up with a topology on X which was nice enough
to use existing cohomology theories.

Enter the Étale Category. Grothendieck attacked this problem by re-
placing the notion of “topology”, which can be thought of as the category of
open sets on X, with the étale category on X, Ét(X).

Étale Cohomology. With this generalisation, it is possible to construct a
cohomology theory, called étale cohomology, which has certain “nice” properties
when the coefficient ring is Z/nZ for n coprime to p, the characteristic of the
finite field.

`-adic Cohomology. However, in order to find “the” cohomology theory,
one requires to consider the `-adic cohomology, constructed from étale cohomol-
ogy:

Let ` be a prime not equal to p. For each étale cohomology group
Hi(X,Z/`kZ), define the `-adic cohomology group Hi(X,Z`) to be the inverse
limit:

Hi(X,Z`) = lim
←
Hi(X,Z/`kZ).

Finally, we eventually reach the correct cohomology groups that will allow
us to use the Lefschetz fixed-point formula, and hence prove three of the four
Weil conjectures:

Hi(X,Q`) = Hi(X,Z`)⊗Q`.

Exercise: Now prove the Riemann hypothesis.
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